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Abstract. The bound states of the D-dimensional supersymmetric oscillator with a bosonic 
and fermionic component are shown to span an irreducible representation of o s p ( 3 , 2 0 ) ,  
which contains the supersymmetric Hamiltonian. The representation branches to two 
infinite-dimensional irreducible representations of osp(2,ZD) and osp( 1 , 2 D )  subalgebras. 
The one-dimensional case is used to exhibit S(2) subalgebras with representations, both 
finite and infinite dimensional, which are reducible but indecomposable. The supersym- 
metry associated with the radial equation of the D-dimensional oscillator is considered 
and states having a fixed angular momentum in each sector provide an irreducible rep- 
resentation space for an osp(2,2) superalgebra and osp( 1 ,2)  subalgebra. 

1. Introduction 

Although applications and illustrations of Lie algebras in elementary non-relativistic 
quantum mechanics are well known, the extension to superalgebras is limited. The 
initial work of de Crombrugghe and Rittenberg (1983) pointed out the association of 
osp( 1 , 2 D )  with the harmonic oscillator, and indicated that supersymmetric systems 
could be expected to furnish further examples, since they always involve at least a 
three-dimensional superalgebra S(2). The D-dimensional supersymmetric harmonic 
oscillator was investigated, and a relevant osp(20,  2 0 )  superalgebra given. The present 
paper extends this investigation to show that the supersymmetric oscillator provides 
representations of other superalgebras, and specific examples of representations of 
S(2) which are reducible but indecomposable. Most of the representations obtained 
are infinite dimensional. The supersymmetric systems are assumed to have just two 
components, bosonic and fermionic. 

A subject of continuing interest is the relation between harmonic oscillators and 
systems with Coulomb potentials. It has been used by d’Hoker and Vinet (1985) to 
associate a superalgebra with a Coulomb potential, using an osp(2,2) algebra associated 
with the four-dimensional oscillator. 

Section 2 of this paper summarises the connection of the superalgebra S(2) with 
a one-dimensional supersymmetric system. In the next section an osp(3,2) superalgebra 
is associated with the one-dimensional supersymmetric oscillator, by reinterpreting the 
work of van der Jeugt (1984) on the spin system. Subalgebras of this osp(3,2) are 
then identified, and their representations on the oscillator states considered. The 
representations are reducible but indecomposable when the subalgebra is not semi- 
simple. In § 4 the one-dimensional results are generalised to 0 dimensions. In terms 
of algebras this amounts to replacing sp(2) by s p ( 2 0 ) ,  so that ( r =  1,2,3)  osp(r,2) 
becomes osp(r, 2 0 ) .  The two-dimensional system is considered in detail. By taking 
a new basis for the superalgebras that is related to polar coordinates rather than 
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Cartesian, an S(2) algebra is identified which relates to the one-dimensional supersym- 
metry on the radial equation that was given by Kostelecky er a1 (1985). Comparing 
this with the work on the one-dimensional oscillator in $ 2  leads to an associated 
osp(2,2) superalgebra of operators that act on the radial functions only. 

After this work was completed the author saw a similar discussion of the one- 
dimensional case by Beckers er a1 (1987). 

2. Supersymmetry and superalgebras 

The basic connection between superalgebras and supersymmetry in elementary quan- 
tum mechanics was given by de Crombrugghe and Rittenberg (1983). If A * =  
2-”*(*d/dx+ U(x))  then 

satisfies 

where 

0 A-A’ O I  (2.3) 

is the supersymmetric Hamiltonian. The superalgebra S(2) is generated by the even 
operator H, and the odd operators Q’ and Q“. If U(x)  is an odd function, the 
eigenfunctions of H,  can be chosen to have definite parity, which determines the 
grading of the representation space. 

Sukumar (1985) used the ‘charge operators’ 

so that 

and put 

] 
0 E - &  

where the ‘factorisation energy’ E is related to U by 

(2.7) 
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The states 

['e,] 
form the 'bosonic sector'; for example 

[??I 
L;xi3 

is the ground state of H ,  if t,b is the ground state of H .  The states 

form the 'fermionic sector', in which fi does not have the eigenvalue E.  Note that CC, 
and d'CC,/dx' have opposite sign in the region where U is significant, giving 

The definitions of H and fi can always be adjusted so that E = 0. 

3. The supersymmetric harmonic oscillator 

Take _U(x) = -x, and + the ground state of H = -4 d2/dx2 +fx2  so that E = i. Then H 
and H = H + 1 have the same eigenfunctions. 

Van der Jeugt (1984) has associated the metaplectic representation of osp(3,2) 
with a one-dimensional harmonic oscillator with spin. This work can be adapted to 
the supersymmetric oscillator by taking Q and Q' as two of the odd operators, and 
using the osp(3,2) commutators (see table 1) to construct the rest of the basis. 

Take 

R , - = Q = [  0 0  ] R - , + = Q t = [  0 A' ] 
A- 0 0 0  

Table 1. Commutators and anticommutators of a basis of osp(3,2) (from Van der Jeugt 
(1984), omitting his subscripts f so that R,=;, for example, is Ro=) .  

SO O S+ - 3 -  O O O RI,  RI- 
5 ,  0 23" 0 0 0 0- 0- 
5 -  0 0 0 0 \2RR,+ t 2 R o -  

0 r ,  - r -  f R , ,  - ;RI  
0 21" 0 RI+ 

0 R I _  0 

0 0 
0 

R; 1 + 
\ 2 R 0 +  \ 2 R 0 -  
0 0 

f R - , +  - f R _ , -  
0 R-i+ 

-21 ,  - S o + ? t ,  

-Rz I - - 

R - i -  0 

s0+2r ,  2 r -  

0 0 
0 
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As above, U+,- and 

["y- A-A+ O ] =so+2to 

give a representation of S(2). Following van der Jeugt (1984) we take 

s + = [ l  0 0  o] I-=[o 0 1  ,] so=[;+ y ]  
giving (using table 1) 

(3.2) 

1 -A* 0 -A- 
Ro,=*: [ ;] R I + = [  ",1 R - , - =  [, ] (3.3) 

J 2  o -A+ 

(3.4) 

Since t: = - t - ,  the sp(2) subalgebra corresponds to su(1 , l )  rather than su(2). The 
general element of the representation space, graded by parity, is 

[%I 
where 4 ( x )  belongs to the bosonic sector ( so=  - f )  and $(x) belongs to the fermionic 
sector ( s o = + ) .  The action of the osp(3,2) basis on eigenstates of H, is illustrated in 
figure 1. 

l 
.Ud .U1 0 4  

Fermionic sector 

t. t* 

Bosonic sector  
uQ .U; 

- !O* 

RO - 
I I I I I 
1 3 5 1 2 
L 4 

f o  
Figure 1. Action of the osp(3.2) operators on supersymmetric oscillator eigenfunctions. 
In the bosonic sector ( s o  = -+) the energy is 21,; in the fermionic sector (so = f )  the energy 
is 2fo+ 1. The symbols U and U' distinguish states of the different irreducible representation 
spaces Y and Y' of the osp(2,2) subalgebra; the subscripts 0 and 1 indicate functions of 
even and odd grade (parity). 

There is an osp( l ,2 )  subalgebra, spanned by t o ,  t , ,  Ro,, for which the bosonic 
sector and the fermionic sector are each irreducible representation spaces. This is the 
spectrum generating algebra for the ordinary harmonic oscillator with no supersym- 
metry. 

There is an osp(2,2) subalgebra spanned by so, t o ,  t,, RI,, R - , * ;  the osp(3,2) 
representation branches to two irreducible representations of this subalgebra, each 
representation space containing the even functions of one sector and the odd functions 
of the other sector (cf figure 1). This osp(2,2) subalgebra was given by de Crombrugghe 
and Rittenberg (1983) as the dynamical symmetry algebra. Note however that it does 
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not contain the osp( 1 ,2)  algebra associated with the ordinary harmonic oscillator. It 
does contain the osp( l ,2 )  algebra (Baake and Reinicke 1986) spanned by the even 
operators t o ,  t ,  and the odd operators ( R , ,  - R-,,)/2J2,  which Baake and Reinicke 
denoted by V,. The representations Y and Y' remain irreducible on restriction to this 
osp( 1 ,2)  subalgebra; the action of the operators on Y is illustrated in figure 2. This 
branching rule is consistent with the corresponding result for finite-dimensional rep- 
resentations. The annihilation of the lowest state in Y by R - , ,  indicates the representa- 
tion corresponds to class (b)  of Baake and Reinicke (1986), and the representation on 
Y' corresponds to their class (c) as its lowest state is annihilated by R , , .  Table 2 
shows the correspondence between bases for osp(2,2). 

Another discussion of superalgebras and the one-dimensional supersymmetric 
harmonic oscillator has been given by Beckers et a1 (1987). Their spectrum generating 
superalgebra contains the same osp(2,2) subalgebra. The remaining four operators 
cannot be compared with s, and Ro= because their representation space is not graded 
by parity, but by making odd operators convert bosonic sector states into fermionic 
sector states and vice versa. 

There are also two five-dimensional subalgebras spanned by the even operators t o ,  
t ,  and the odd operators R,,  with either CY = 1 or (Y = -1. These algebras are not 
semisimple since the odd operators form a solvable ideal. Their representations on Y 
or Y" are reducible but indecomposable, the invariant subspaces consisting of the 
fermionic states for CY = 1 and the bosonic states for CY = -1. 

There are four S(2) subalgebras that illustrate various types of representation. 
( i )  Basis H ,  = so+2t0,  QZ = R,,, (as in (2.4) and ( 2 . 5 ) ) :  the ground state of the 

bosonic sector is a one-dimensional representation space in which all operators are 
zero; bosonic and fermionic states with the same energy E give a two-dimensional 
representation space in which the even operator H, has the constant value E -+. The 

Figure 2. Action in the representation space Y of the osp( 1 ,2)  subalgebra in which the 
odd operators are c= = ( R I ,  -R_,,)/Zb/2. 

Table 2. Correspondence between bases for osp(2,2)  representations. The first two columns 
are the commuting even operators of the Cartan subalgebra. The first row is the standard 
basis of Scheunert er a[  (19771, designed to exhibit the isomorphic s p l ( l , 2 ) .  The last row 
is the basis used by Beckers et a/  ( 1987). 

Standard 
basis B Q3 Q- Q- V+ V -  w+ W- 
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two states are 

fi = [ 21 fi = [*;-,I ( 3 . 5 )  

giving 

HXJ; = kJ; Q-fi = Q+f2 = 0 Q + f i  = Jkf, Q-f i=. /kf i  (3.6) 

A+$k=(k+1)I '*$L, i  A-$k = J k  $ k - l .  (3.7) 

provided that $k is a normalised oscillator eigenfunction so that 

(i i)  Basis -s0+2t0,  R*l*: the ground state of the fermionic sector is a one- 
dimensional representation space in which all operators are zero; any state in the 
bosonic sector with energy E - 1 is paired with the fermionic sector state with energy 
E +1 to give a two-dimensional representation space in which the even operator 
-so+2t0  has the constant value E -4. These representations are equivalent to those 
in (i). 

(iii) For the basis t,, RZ1+ the representations are reducible, indecomposable and 
infinite dimensional; a representation space contains one of the representation spaces 
in (ii) and all states of higher energy that can be obtained using t + .  Alternatively a 
representation space is either Y or Y' (see figure 1) omitting all states below some 
minimum value of t o .  If this space has basis ( j  = 0,1 ,2 , .  . .) 

u, = [ $71 ( j  even) U,=[ ] ( j o d d )  (3.8) *" +, 
then (a  = il) 

( t,) v, = $[ ( n + j  + 1 )( n + j + 2 ) I '  'U, - 2  (R,+)u,  = - f { a + ( - i ) ' " ( n + j + i ) I ' ' 2 u , , l .  
(3.9) 

This is not a star representation. The alternative equivalent representation interchanges 
the sectors in (3.8). 

(iv) For the basis t - ,  R k I -  an n-dimensional representation space is obtained from 
Y or Y' (see figure 1) by omitting all states with to> i n  - a .  Using Y this basis is 

U" = [ " 0 ' 3  or [ $;-'I 
(3.10) 

and (a = i l )  

( r - ) u , + l  = - $ ( j 2 - j ) " *  U, - 1 ( R , - ) u , + ~  = ~ [ a + ( - l ) ' ] j ' " u , .  (3.11) 

The representation is irreducible if n = 1 and otherwise reducible but indecomposable. 
It is not a star representation. The case n = 4 is illustrated in figure 3(b) ,  with the 
operator notation H = t - ,  Q* = R*,- .  

The representations (i)  and ( i i )  are just the typical representations discussed by de 
Crombrugghe and Rittenberg (1983). The operator so can be used for the automorphism 
M appearing in their discussion: 

SOfI = -if, sof2 = i f 2  SOU,  = (-l)'iU,. (3.12) 
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U 

- - c  

' /  - F U2 - 
0 .  

(0) Ibl 
Figure 3. Different examples of four-dimensional reducible but indecomposable representa- 
tions of S(2) ,  showing the action of the even operator H and the odd operators Q=; all 
operations not shown on the diagrams result in zero. 

The tensor product of two typical two-dimensional representations of S(2) was 
given by de  Crombrugghe and Rittenberg (1983). Their example of a reducible but 
indecomposable product representation is illustrated in figure 3( a ) ,  the functions E 
and F being certain linear combinations of e l f i  and eJ , .  This is evidently inequivalent 
to the representation illustrated in figure 3( b ) .  

4. The supersymmetric D-dimensional oscillator 

For each of the operators in equations (3.1), (3.3) and (3.4) there are now 0 operators, 
one in each coordinate x,: 

(4.1) 

The three operators in equation (3.2) are retained. Commutators involving different 
coordinates are zero, so that table 1 still supplies most of the results. However 
anticommutators produce 2 0 (  0 - 1) operators t i ,  t;, t : ,  with diagonal elements 
-A:A,-, -ALA:, ATA: respectively. The 6 0  odd operators and 2 D 2 + 0 + 3  even 
operators form the superalgebra o s p ( 3 , 2 0 ) ,  which seems sufficient to generate all 
states of a supersymmetric 0-dimensional oscillator with two components (bosonic 
and fermionic), although de  Crombrugghe and Rittenberg (1983) suggest o sp (20 ,  2 0 )  
as the appropriate superalgebra. Again parity grades the representation space. 

The discussion of subalgebras and their representations given for the one- 
dimensional oscillator will now be extended to the two-dimensional case. The action 
of the even operators is illustrated in figure 4; the ten operators t : ,  tb, ti and tk2 form 
a basis for the algebra sp(4). The action of the odd operators is illustrated in figure 
5; including with the sp(4) basis the four odd operators RA* gives the osp( 1 ,4 )  spectrum 
generating algebra for the ordinary (non-supersymmetric) oscillator (de  Crombrugghe 
and Rittenberg 1983). 

On restriction to the osp(2 ,4)  subalgebra with basis so, Rh, ( i  = 1 ,2 ;  cy = * l )  and  
the sp(4) basis, the representation splits into two irreducible representation spaces 
containing the even (parity) states of one sector and the odd states of the other. This 
is essentially the same as the one-dimensional case. 
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Ferm 1or.i c  
sec tor  1s: = 1 

0 

Figure 4. Action of the even osp(3,4) operators on supersymmetric two-dimensional 
oscillator eigenfunctions. The sp(4) operators ti, etc, have the same action in each sector. 
Numbers ( n ,  , n 2 )  show the number of applications of the creation operator in each variable; 
the eigenvalues of the Canan subalgebra basis ( r h ,  r i )  are given by It., + & f n z + a ) .  The 
energy is ( n ,  + n2+ 1) in the bosonic sector, or ( n ,  + n2 + 2)  in the fermionic sector. 

\ \---’ 10.21 

Figure 5. Action of the odd osp(3,4)  operators on supersymmetric two-dimensional 
oscillator eigenfunctions. In all cases changing the signs of the subscripts gives the operator 
with opposite action. The states are labelled with numbers ( n , ,  n2) showing the number 
of oscillator quanta in each variable. 

There are also representations of S(2) of the types (i)-(iv) considered in one 
dimension, and the extra dimension can be used to extend these. For example the 
seven-dimensional superalgebra with basis r‘, r!>, Rk-  ( i  = 1 ,2 ;  a = i l )  has reducible, 
indecomposable representations of type (iii) of dimension i n ( n  + 1). The states of the 
six-dimensional representation are shown connected by odd operators in figure 5. This 
superalgebra is not semisimple. 
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Supersymmetry for the D-dimensional oscillator has been discussed by Kostelecky 
er a1 (1985), using the one-dimensional formalism of § 2 with the radial coordinate 
only. To show how their work is related to the superalgebras defined above, consider 
the two-dimensional oscillator. It is necessary to replace the operators A I  by the 
combinations A, = 2-"*( A; 7 iAy), AT = 2-"2( A; * iA:) which effect unit changes in 
the angular momentum and the energy. The angular momentum is raised by A- and 
by AT. Then equations analogous to (4.1) define a new basis for the osp(3 ,4)  superal- 
gebra, for example 

O ] etc. 
A": R;-=[  0 0  ] R:l+=[o 0 AT o ]  r ;+= 

0 A*A$ A- 0 
(4.2) 

The action of these operators is illustrated by relabelling figures 4 and 5: superscripts 
1 and 2 are replaced by - and +, and the state labels ( N ,  m) show energy and angular 
momentum, as in figure 6. In polar coordinates 

The grading of the representation space is still determined by the physical parity, which 
is the parity of m ;  this is the same as the parity of N, and could be determined by the 
(unphysical) parity in r of the radial functions. 

To identify operators equivalent to the Q and Q' used by Kostelecky et al, it is 
necessary to consider separately different signs of m, since the Q and Q' relate to the 
radial equation only, and  involve Im/ rather than m. The shifts between sectors and 
the changes in angular momentum and energy identify the correspondences 

(4.4) 

The pairs of states connected by this supersymmetry are shown in figure 6. Pairs 
having the same angular momentum in a sector lie in a plane in figure 6, and taking 
two more odd operators allows all states in such a plane to be obtained. Taking the 
anticommutators of the odd  operators gives even operators, and their commutators 
close to form an osp(2 ,2)  superalgebra. For each integer m there is a representation 
space 9,: for m 2 0 this space is spanned by the states in figure 6( a )  labelled ( m  + 2k, m )  

i a i  ib I 
Figure 6. Action of odd  operators which correspond to the charge operators used by 
Kostelecky er a /  (1985) for ( a )  m 2 0, ( b )  m s 0. The state label is (N,  m )  where m is the 
angular momentum and  the energy is N + 1 in the bosonic sector and  N + 2 in the fermionic 
sector. States ( lm t ,  m )  are  annihilated.  
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in the bosonic sector and ( m  - 1 +2k, m + 1)  in the fermionic sector; for m < 0 the 
space is spanned by the states in figure 6 ( b )  labelled ( I m  +2k, m )  in the bosonic sector 
and (Iml- 1 +2k, m - 1) in the fermionic sector. The even and odd operators giving a 
standard basis of osp(2,2) - spl( 1 ,2)  are shown in table 2. 

As these representation spaces have constant angular momentum in each sector, it 
is sufficient to consider radial operators such as Q and Q'. These act on U ( r )  where 
U (  r)  J r  is the actual radial function, so a la r  in (4.3) should be replaced by (alar)  - 
(1/2r). Also a/&$ is replaced by im when acting in the bosonic sector; in the fermionic 
sector ala4 is replaced by i(m + 1) if m 2 0 and by i(m - 1) if m < 0. The resulting 
operators for the osp(2,2) basis are independent of the sign of m when expressed in 
terms of L =  /mi. 

Finally the dependence of these radial operators on the dimension D is always as 
in Q and 0'. Taking the D = 2  results with m>O and replacing m by L + ; D - l  
therefore gives an osp(2,2) algebra of operators acting on radial functions of the 
D-dimensional oscillator. The standard basis is 

B = ( -D  - 2 L + 1 ) 1 / 4  + so/2 Q3 = HZ/2 + (2 L +  D - 1)( 1 + so)/8r' (4.5) 

(4.6) Q* = f (  iH * r2 - rd/dr -;)I + (2so i  1)(2L + D - 1)/8r2 

U ,  = [( F r + a/ar) /2  - (2L + D - 1)/4r]s+ 

W ,  = [( i r + a/ar)/2 + (2  L +  D - 1)/4r]s- (4.7) 

where the matrices s, and so are given in equation (3.2), 1 is the 2 x 2 unit matrix, and 

H = (-a'/ar2+ r')/2+ ( 2 ~ +  D - 1 ) ( 2 ~ +  D -3)/4r'. 

The grading of the representation space is now determined by (unphysical) parity in 
r. The osp(2,2) representations remain irreducible on restriction to osp( 1,2) by 
omitting the even operator B and replacing the four odd operators by 

1 0 * r + d / d r + ( 2 L + D - l ) / 2 r  
~ r + d / d r - ( 2 L + D - l ) / 2 r  0 v* ,,* = f ( v* + w* 1 = - (4.8) 

Only the osp( l ,2 )  subalgebra is needed to generate the representation space (all radial 
functions with fixed angular momentum). However the supersymmetric Hamiltonian 

H,, = 2 B + 2 Q 3  

O 3 (4.9) 
-2L - D - a2/arz+ r'+ (2L+ D - 3)(2L+ D - 1)/4r2 =1[ 

2 0 -2L - D+2 -a'/ar'+ r Z +  (2L+ D+ 1)(2L+ D - 1)/4r2 

is in the osp(2,2) algebra but not in the osp( 1 ,2)  subalgebra. 
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